Publications of Yuh Hijikata

Updated on April 21, 2017


Peer-Reviewed Journals


  1. Development of a porous coordination polymer with a high gas capacity
    using a thiophene-based bent tetracarboxylate ligand

    F. Wang, S. Kusaka, Y. Hijikata, N. Hosono, S. Kitagawa
    ACS Applied Materials & Interface., DOI: 10.1021/acsami.7b01568, in press
  2. Polymorphism of [6]cycloparapehylene for packing structure-dependent host-guest interaction
    T. Fukushima, H. Sakamoto, Y. Hijikata, S. Irle, K. Itami, Chem. Lett., DOI: 10.1246/cl.170210, accepted.
  3. Metal–organic cuboctahedra for synthetic ion channels with multiple conductance states
    R. Kawano, N. Horike, Y. Hijikata, M. Kondo, A. Carne, P. Larpent, T. Osaki, K. Kamiya, S. Kitagawa, S. Takeuchi, S. Furukawa, Chem, 2017, 2, 393-403, DOI: 10.1016/j.chempr.2017.02.002.
  4. Modulation of redox potentials utilizing the flexible coordination sphere of a penta-coordinate complex in the solid state
    R. Ohtani, Y. Kitamura, Y. Hijikata, M. Nakamura, L. F. Lindoy, S. Hayami, Dalton Trans., 2017, 46, 3749-3754, DOI: 10.1039/c7dt00233e.
  5. Structural influence of transition metal (Sc, Y, and Lu) atoms inside gold nanoparticles
    L.X. Zhao, Y. Hijikata, S. Irle, Int. J. Quantum Chem., DOI: 10.1002/qua.25371, accepted.
  6. Double-stranded helical oligomers covalently-bridged by rotary cyclic boronate esters
    H. Iida, K. Ohmura, R. Noda, S. Iwata, H. Katagiri, N. Ousaka, T. Hayashi, Y. Hijikata, S. Irle, E. Yashima, Chem. Asian J., DOI: 10.1002/asia.201700162, accepted.
  7. A new triazine based covalent organic framework for high-performance capacitive energy storagea
    P. Bhanja, K. Bhunia, S. K. Das, D. Pradhan, R. Kimura, Y. Hijikata, S. Irle, A. Bhaumik, ChemSusChem, 2017, 10, 921-929, DOI: 10.1002/cssc.201601571.


  1. Rhodium-organic cuboctahedra as porous solids with strong binding sites
    S. Furukawa, N. Horike, M. Kondo, Y. Hijikata, A. Carné-Sánchez, P. Larpent, N. Loubain, S. Diring, H. Sato, R. Matsuda, R. Kawano, and S. Kitagawa, Inorg. Chem., 2016, 55, 10843–10846, DOI: 10.1021/acs.inorgchem.6b02091.
  2. Theoretical analysis of structural diversity of covalent organic framework: Stacking isomer structures thermodynamics and kinetics
    T. Hayashi, Y. Hijikata, A. Page, D. Jiang, and S. Irle, Chem. Phys. Lett., 2016, 664, 101-107, DOI: 10.1016/j.cplett.2016.09.071.
  3. Chiral-Selective Carbon Nanotube Etching with Ammonia: A Quantum Chemical Investigation
    C. A. Eveleens, Y. Hijikata, S. Irle, and A. J. Page, J. Phys. Chem. C, 2016, 120, 19862–19870, DOI: 10.1021/acs.jpcc.6b06997.
  4. Cycloparaphenylene As A Molecular Porous Carbon Solid With Uniform Pores Exhibiting Adsorption-Induced Softness
    H. Sakamoto, T. Fujimori, X. Li, K. Kaneko, K. Kan, N. Ozaki, Y. Hijikata, S. Irle, and K. Itami, Chem. Sci., 2016, 7, 4204-4210, DOI: 10.1039/C6SC00092D.
  5. An Adsorbate Discriminatory Gate Effect in a Flexible Porous Coordination Polymer for Selective Adsorption of CO2 over C2H2
    M. L. Foo, R. Matsuda, Y. Hijikata, R. Krishna, H. Sato, S. Horike, A. Hori, J. Duan, Y. Sato, Y. Kubota, M. Takata, and S. Kitagawa, J. Am. Chem. Soc., 2016, 138, 3022-3030, DOI: 10.1021/jacs.5b10491.


  1. A convenient strategy for designing a soft nanospace: An atomicexchange in a ligand with isostructural frameworks
    Y. Ma, R. Matsuda, H. Sato, Y. Hijikata, L. Li, S. Kusaka, M. Foo, F. Xue, G. Akiyama, R. Yuan, and S. kitagawa, J. Am. Chem. Soc., 2015, 137, 15825-15832, DOI: 10.1021/jacs.5b09666.
  2. High CO2/CH4 selectivity of a flexible copper(II) porous coordination polymer under humid conditions
    S. Noro, R. Matsuda, Y. Hijikata, Y. Inubushi, S. Takeda, S. Kitagawa, Y. Takahashi, M. Yoshitake, K. Kubo, and T. Nakamura, ChemPlusChem, 2015, 80, 1517-1524, DOI: 10.1002/cplu.201500278. (Front Cover)
  3. Control of molecular rotor rotational frequencies in porous coordination polymers using a solid-solution approach
    M. Inukai, T. Fukushima, Y. Hijikata, N. Ogiwara, S. Horike, and S. Kitagawa, J. Am. Chem. Soc., 2015, 137, 12183-12186, DOI: 10.1021/jacs.5b05413.
  4. Glass formation via structural fragmentation of a 2D coordination network
    D. Umeyama, N. P. Funnell, M. J. Cliffe, J. A. Hill, A. L. Goodwin, Y. Hijikata, T. Itakura, T. Okubo, S. Horike, and S. Kitagawa, Chem. Commun., 2015, 51, 12728-12731, DOI: 10.1039/C5CC04626B.
  5. Porous coordination polymers with ubiquitous and biocompatible metals and a neutral bridging ligand
    S. Noro, J. Mizutani, Y. Hijikata, R. Matsuda, H. Sato, S. Kitagawa, K. Sugimoto, Y. Inubushi, K. Kubo, and T. Nakamura, Nat. Commun., 2015, 6, DOI: 10.1038/ncomms6851.
  6. Sequential synthesis of coordination polymersomes
    R. Ohtani, M. Inukai, Y. Hijikata, T. Ogawa, M. Takenaka, M. Ohba, and S. Kitagawa, Angew. Chem. Int. Ed., 2015, 54, 1139-1143, DOI: 10.1002/anie.201408101. (Hot paper)


  1. DRIFT and theoretical studies of ethylene/ethane separation on flexible microporosity of [Cu2(2,3-pyrazinedicarboxylate)2(pyrazine)]n
    K. Kishida, Y. Watanabe, S. Horike, Y. Watanabe, Y. Okumura, Y. Hijikata, S. Sakaki, and S. Kitagawa, Eur. J. Inorg. Chem., 2014, (17), 2747-2752, DOI: 10.1002/ejic.201402085. (Cover Picture)
  2. Interaction of various gas molecules with paddle-wheel-type open metal sites of porous coordination polymers: theoretical investigation
    Y. Hijikata and S. Sakaki, Inorg. Chem., 2014, 53, 2417-2426, DOI: 10.1021/ic402172v.
  3. Self-accelerating CO sorption in a soft nanoporous crystal
    H. Sato, W. Kosaka, R. Matsuda, A. Hori, Y. Hijiakta, S. Sakaki, M. Takata, and S. Kitagawa, Science, 2014, 343, 167-170, DOI: 10.1126/science.1246423.


  1. Anion-dependent host-guest properties of porous assemblies of coordination complexes (PACs), [Cu(A)2(py)4] (A = PF6, BF4, CF3SO3, and CH3SO3; py = pyridine), based on Werner-type copper (II) complexes in the solid state
    S. Noro, K, Fukuhara, K, Sugimoto, Y, Hijikata, K, Kubo, and T, Nakamura, Dalton Trans., 2013, 42, 11100-11110 DOI: 10.1039/c3dt51104a.
  2. Siloxane D4 capture by hydrophobic microporous materials
    Y. Mito-oka, S. Horike, Y. Nishitani, T. Masumori, M. Inukai, Y. Hijikata, and S. Kitagawa, J. Mater. Chem. A, 2013, 1, 7885-7888, DOI: 10.1039/C3TA11217A.
  3. Solving the non-Born-Oppenheimer Schrödinger equation for the hydrogen molecular ion with the free complement method II. Highly accurate electronic, vibrational and rotational excited states
    H. Nakashima, Y. Hijikata, and H. Nakatsuji, Astrophys. J., 2013, 770, 144, DOI: 10.1088/0004-637X/770/2/144.
  4. Rational synthesis of a porous copper (II) coordination polymer bridged by weak Lewis-base inorganic monoanions using an anion-mixing method
    S. Noro, K. Fukuhara, Y. Hijikata, K. Kubo and T. Nakamura, Inorg. Chem., 2013, 52, 5630-5632, DOI: 10.1021/ic400276c.
  5. Pore design of two-dimensional coordination polymers toward selective adsorption
    Y. Hijikata, S. Horike, M. Sugimoto, M. Inukai, T. Fukushima, and S. Kitagawa, Inorg. Chem., 2013, 52, 3634-3642, DOI: 10.1021/ic302006x.
  6. Fe2+ based layered porous coordination polymers and soft encapsulation of guests via redox activity
    S. Horike, M. Sugimoto, K. Kongpatpanich, Y. Hijikata, M. Inukai, D. Umeyama, S. Kitao, M. Seto, and S. Kitagawa, J. Mater. Chem. A, 2013, 1, 3675-3679, DOI: 10.1039/C3TA01414B.
  7. Highly selective CO2 adsorption accompanied with low-energy regeneration in a two-dimensional Cu(II) porous coordination polymer with inorganic fluorinated PF6 anions
    S. Noro, Y. Hijikata, M. Inukai, T. Fukushima, S. Horike, M. Higuchi, S. Kitagawa, T. Akutagawa, and T. Nakamura, Inorg. Chem., 2013, 52, 280-285, DOI: 10.1021/ic301823j.


  1. Investigation of post-grafted groups of a porous coordination polymer and its proton conduction behavior
    M. Inukai, S, Horike, D, Umeyama, Y, Hijikata, and S, Kitagawa, Dalton Trans., 2012, 41, 13261-13263, DOI: 10.1039/C2DT31836A.
  2. Ligand-based solid solution approach to stabilisation of sulphonic acid groups in porous coordination polymer Zr6O4(OH)4(BDC)6 (UiO-66)
    M. L. Foo, S. Horike, T. Fukushima, Y. Hijikata, Y. Kubota, M. Takata, and S. Kitagawa, Dalton Trans., 2012, 41, 13791-13794, DOI: 10.1039/C2DT31195J. (Hot Article)
  3. Design of flexible Lewis acidic sites in porous coordination polymers by using the viologen moiety
    M. Higuchi, K. Nakamura, S. Horike, Y. Hijikata, N. Yanai, T. Fukushima, J. Kim, K. Kato, M. Takata, D. Watanabe, S. Oshima, and S. Kitagawa, Angew. Chem. Int. Ed., 2012, 51, 8369-8372, DOI: 10.1002/anie.201203834.
  4. A switchable molecular rotator: neutron spectroscopy study on a polymeric spin-crossover compound
    J. A. Rodríguez-Velamazán, M. A. González, J. A. Real, M. Castro, M. C. Muñoz, A. B. Gaspar, R. Ohtani, M. Ohba, K. Yoneda, Y. Hijikata, N. Yanai, M. Mizuno, A. Hideo, and S. Kitagawa, J. Am. Chem. Soc., 2012, 134, 5083-5089, DOI: 10.1021/ja206228n.


  1. Confinement of mobile histamine in coordination nanochannels for fast proton transfer
    D. Umeyama, S. Horike, M. Inukai, Y. Hijikata, and S. Kitagawa, Angew. Chem. Int. Ed., 2011, 50, 11706-11709, DOI: 10.1002/anie.201102997.
  2. Gas detection by structural variations of fluorescent guest molecules in a flexible porous coordination polymer
    N. Yanai, K. Kitayama, Y. Hijikata, H. Sato, R. Matsuda, Y. Kubota, M. Takata, M. Mizuno, T. Uemura, and S. Kitagawa, Nature Mater., 2011, 10, 787-793, DOI: 10.1038/nmat3104.
  3. Differences of crystal structure and dynamics between soft porous nanocrystal and bulk crystal
    Y. Hijikata, S. Horike, D. Tanaka, J. Groll, M. Mizuno, J. Kim, M. Takata, and S. Kitagawa, Chem. Commun., 2011, 47, 7632-7634, DOI: 10.1039/C1CC10983A.
  4. Relationship between channel and sorption properties in coordination polymers with interdigitated structures
    Y. Hijikata, S. Horike, M. Sugimoto, H. Sato, R. Matsuda, and S. Kitagawa, Chem. Eur. J., 2011, 17, 5138-5144, DOI: 10.1002/chem.201003734.


  1. Functionalization of coordination nanochannels for controlling tacticity in radical vinyl polymerization
    T. Uemura, Y. Ono, Y. Hijikata, and S. Kitagawa, J. Am. Chem. Soc., 2010, 132, 4917-4924, DOI: 10.1021/ja100406k.
  2. Selective sorption of oxygen and nitric oxide by an electron-donating flexible porous coordination polymer
    S. Shimomura, M. Higuchi, R. Matsuda, K. Yoneda, Y. Hijikata, Y. Kubota, Y. Mita, J. Kim, M. Takata, and S. Kitagawa, Nature Chem., 2010, 2, 633-637, DOI: 10.1038/nchem.684.


  1. Solving non-Born-Oppenheimer Schrödinger equation for hydrogen molecular ion and its isotopomers using the free complement method
    Y. Hijikata, H. Nakashima, and H. Nakatsuji, J. Chem. Phys., 2009, 130, 024102, DOI: 10.1063/1.3048986.
  2. Porous coordination polymer with pyridinium cationic surface [Zn2(tps)2(cpb)]
    M. Higuchi, D. Tanaka, S. Horike, H. Sakamoto, K. Nakamura, Y. Takashima, Y. Hijikata, N. Yanai, J. Kim, K. Kato, Y. Kubota, M. Takata, and S. Kitagawa, J. Am. Chem. Soc., 2009, 131, 10336-100337, DOI: 10.1021/ja900373v.
  3. Charge-polarized coordination space for H2 adsorption
    J. Hasegawa, M. Higuchi, Y. Hijikata, and S. Kitagawa, Chem. Mater., 2009, 21, 1829-1833, DOI: 10.1021/cm802566z.


  1. Solving the electron and electron-nuclear Schrödinger equations for the excited states of helium atom with the free iterative-complement-interaction method
    H. Nakashima, Y. Hijikata, and H. Nakatsuji, J. of Chem. Phys., 2008, 128, 154108, DOI: 10.1063/1.2904871.

Comments are closed.