Publications of Daisuke Yokogawa

Updated on May 24, 2016

 

Peer-Reviewed Journals

2016

  1. K. Usui, S. Irle, and D. Yokogawa,* Understanding of the Off-On Response Mechanism in Caged Fluorophores Based on Quantum and Statistical Mechanics, J. Phys. Chem., accepted.
  2. K. Kikui, S. Hayaki, K. Kido, D. Yokogawa, K. Kasahara, Y. Matsumura, H. Sato, and S. Sakaki, Solvent structure of ionic liquid with carbon dioxide, J. Mol. Liq., 217, 12-16 (2016). DOI: 10.1016/j.molliq.2015.06.061 
  3. H. Osaki, C.-M. Chou, M. Taki,* Y. Sato, S. Saito, A. Fukazawa, K. Welke, D. Yokogawa, T. Higashiyama, S. Irle,* and S. Yamaguchi,* A Macrocyclic Fluorophore Dimer with Flexible Linkers: Bright Excimer Emission with Long Fluorescence Lifetime, Angew. Chem. Int. Ed., accepted.
  4. Arifin, M. Puripat, D. Yokogawa,* V. Parasuk,* and S. Irle, Glucose transformation to 5-hydroxymethylfurfural in acidic ionic liquid: A quantum mechanical study, J. Comput. Chem., 37, 327-335 (2016). DOI: 10.1002/jcc.24214

2015

  1. D. Yokogawa,* Theoretical study of chemical reactions in solution, AIP Conf. Proc.,1702, 090067 (2015). DOI: 10.1063/1.4938875 
  2. K. Usui, M. Ando, D. Yokogawa,* S. Irle,* Understanding the On-Off Switching Mechanism in Cationic Tetravalent Group V-Based Fluoride Molecular Sensors Using Orbital Analysis, J. Phys. Chem. A, 119, 12693-12698 (2015). DOI: 10.1021/acs.jpca.5b09709 
  3. E. Yamaguchi, A. Fukazawa,* Y. Kosaka, D. Yokogawa, S. Irle,* and S. Yamaguchi,* A Benzophosphole P-oxide with an Electron-Donating Group at 3-Position: Enhanced Fluorescence in Polar Solvents, Bull. Chem. Soc. Jpn, 88, 1545-1552 (2015). DOI: 10.1246/bcsj.20150238 
  4. K. Kido,* K. Kasahara, D. Yokogawa, and H. Sato, A hybrid framework of first principles molecular orbital calculations and a three-dimensional integral equation theory for molecular liquids: Multi-center molecular Ornstein-Zernike self-consistent field (MC-MOZ-SCF) approach, J. Chem. Phys., 143, 014103 (2015). DOI: 10.1063/1.4923007
  5. D. Yokogawa,* Exchange repulsive potential adaptable for electronic structure changes during chemical reactions, J. Chem. Phys., 142, 164109 (2015). DOI: 10.1063/1.4919343

 

2014

  1. Y. Nishimoto, D. Yokogawa, H. Yoshikawa, K. Awaga, and S. Irle,* Super-Reduced Polyoxometalates: Excellent Molecular Cluster Battery Components and Semipermeable Molecular Capacitors, J. Am. Chem. Soc., 136, 9042-9052 (2014). DOI: 10.1021/ja5032369
  2. N. Suzuki, A. Fukazawa, K. Nagura, S. Saito, H. Kitoh-Nishioka, D. Yokogawa, S. Irle,* and S. Yamaguchi,* A Strap Strategy for Construction of an Excited-State Intramolecular Proton Transfer (ESIPT) System with Dual Fluorescence, Angew. Chem. Int. Ed., 53, 8231-8235 (2014). DOI: 10.1002/anie.201404867
  3. Y. Nishimura, D. Yokogawa,* and S. Irle,* Theoretical Study of Cellobiose Hydrolysis to Glucose in Ionic Liquids, Chem. Phys. Lett., 603, 7-12 (2014). DOI: 10.1016/j.cplett.2014.04.014

 

2013

  1. D. Yokogawa, New fitting approach of electrostatic potential for stable quantum mechanical calculations using the reference interaction site model, Chem. Phys. Lett., 587, 113-117 (2013). DOI: 10.1016/j.cplett.2013.09.062
  2. H. Tanaka, K. Akagi, C. Oneyama, M. Tanaka, Y. Sasaki, T. Kanou, Y-H Lee, D. Yokogawa, M-W. Dobenecker, A. Nakagawa, M. Okada, and T. Ikegami,* Identification of a New Interaction Mode between the Src Homology 2 Domain of C-terminal Src Kinase (Csk) and Csk-binding Protein/Phosphoprotein Associated with Glycosphingolipid Microdomains, J. Biol. Chem., 288, 15240-15254 (2013). DOI: 10.1074/jbc.M112.439075
  3. D. Yokogawa, Linear response approximation to reference interaction site model self-consistent field explicitly including spatial electron density distribution. Free energy, J. Chem. Phys., 138, 164109 (2013). DOI: 10.1063/1.4802001
  4. M. Sumimoto,* Y. Kawashima, D. Yokogawa, K. Hori, and H. Fujimoto, Influences of dispersion and long-range corrections on molecular structures of three types of lithium phthalocyanine dimer, Int. J. Quantum Chem., 113, 272-276 (2013). DOI: 10.1002/qua.24072

 

2012

  1. M. Sumimoto,* T. Kuroda, D. Yokogawa, H. Yamamoto, and K. Hori,* Theoretical study on a new active species for the Pd(II)-catalyzed Mizoroki-Heck reaction, J. Org. Chem., 710, 26-35 (2012). DOI: 10.1016/j.jorganchem.2012.03.00
  2. M. Sumimoto,* D. Yokogawa, Y. Kawashima, K. Hori, and H. Fujimoto, Theoretical and experimental study on the excited states of the X-, α- and β-forms of lithium phthalocyanine, Spectrochim. Acta A, 91, 118-125 (2012). DOI: 10.1016/j.saa.2012.01.077
  3.  D. Yokogawa,* Development of the isotropic site-site potential for exchange repulsion energy and combination with the isotropic site-site potential for electrostatic part, J. Chem. Phys., 137, 204101 (2012). DOI: 10.1063/1.4766312
  4. K. Kido, D. Yokogawa, and H. Sato,* A modified repulsive bridge correction to accurate evaluation of solvation free energy in integral equation theory for molecular liquids, J. Chem. Phys., 137, 024106 (2012). DOI: 10.1063/1.4733393
  5.   K. Kido, D. Yokogawa, and H. Sato,* The development of a revised version of multi-center molecular Ornstein-Zernike equation, Chem. Phys. Lett., 531, 223-228 (2012). DOI: 10.1016/j.cplett.2012.02.005

 

2011

  1. D. Yokogawa,* Development of isotropic site-site potential for exchange repulsion energy based on ab initio calculation. I. Closed shell system, Chem. Phys. Lett., 515 179-185 (2011). DOI: 10.1016/j.cplett.2011.08.094
  2. D. Yokogawa, K. Ono, H. Sato,* and S. Sakaki, Theoretical study on aquation reaction of cis-platin complex: RISM-SCF-SEDD, a hybrid approach of accurate quantum chemical method and statistical mechanics, Dalton Trans., 40, 11125-11130 (2011). DOI: 10.1039/C1DT10703H
  3. M. Sumimoto,* D. Yokogawa, M. Komeda, H. Yamamoto, K. Hori, and H. Fujimoto, Theoretical investigation of the molecular structures and excitation spectra of triphenylamine and its derivatives, Spectrochim. Acta Part A, 81, 653-660 (2011). DOI: 10.1016/j.saa.2011.06.069
  4. M. Sumimoto,* Y. Kawashima, D. Yokogawa, K. Hori, and H. Fujimoto,Theoretical study on the molecular structures of X-, α- and β-types of lithium phthalocyanine dimer, J. Comput. Chem, 32 3062-3067 (2011). DOI: 10.1002/jcc.21889

 

2010

  1. K. Hirano, D. Yokogawa, H. Sato,* and S. Sakaki, An analysis of 3D solvation structure in biomolecules: Application to coiled coil serine and Bacteriorhodopsin, J. Phys. Chem. B, 114 7935-7941 (2011). DOI: 10.1021/jp911470p
  2. D. Yokogawa, H. Sato,* and S. Sakaki, An integral equation theory for structural fluctuation in molecular liquid, Chem. Phys. Lett. 487, 241-245 (2010). DOI: 10.1016/j.cplett.2010.01.061
  3. D. Yokogawa, H. Sato,* S. Sakaki, and Y. Kimura, Aqueous solvation of p-aminobenzonitrile in the excited states: A molecular level theory on density dependence, J. Phys. Chem. B, 114, 910-914 (2010). DOI: 10.1021/jp910362z

 

2009

  1. D. Yokogawa,* and T. Ikegami, A robust approach to calculate entropy change based on density functional theory in the energy representation, J. Chem. Phys., 131 221101 (2009). DOI: 10.1063/1.3272029

This paper was selected in “Virtual Journal of Biological Physics Research 18 (2009).”
This paper was identified on the JCP Top 20 Most Downloaded Articles in December 2009.

  1. D. Yokogawa, H. Sato,* and S. Sakaki, Analytical energy gradient for reference interaction site model self-consistent-field explicitly including spatial electron density distribution, J. Chem. Phys., 131, 214504 (2009). DOI: 10.1063/1.3265856
  2. D. Yokogawa, H. Sato, S. Gusarov, and A. Kovalenko,* Development of additive isotropic site potential for exchange repulsion energy, based on intermolecular perturbation theory, Can. J. Chem., 87, 1727-1732 (2009). DOI: 10.1139/V09-131
  3. K. Iida, D. Yokogawa, A. Ikeda, H. Sato,* and S. Sakaki, Carbon dioxide capture at the molecular level, Phys. Chem. Chem. Phys., 11, 8556-8559 (2009). DOI: 10.1039/B906912G
  4. S. Hayaki, K. Kido, D. Yokogawa, H. Sato,* and S. Sakaki, A theoretical analysis of a Diels-Alder reaction in ionic liquids, J. Phys. Chem. B, 113, 8227-8230 (2009). DOI: 10.1021/jp902599b
  5. D. Yokogawa, H. Sato,* T. Imai, and S. Sakaki, A highly parallelizable integral equation theory for three-dimensional solvent distribution function: application to Biomolecules, J. Chem. Phys., 130, 064111 (2009). DOI: 10.1063/1.3077209
  6. K. Iida, D. Yokogawa, H. Sato,* and S. Sakaki, A systematic understanding of orbital energy shift in polar solvent, J. Chem. Phys., 130 044107 (2009). DOI: 10.1063/1.3068531
  7. D. Yokogawa, H. Sato,* and S. Sakaki, The position of water molecules in Bacteriorhodopsin: A fragment three-dimensional reference interaction site model study, J. Mol. Liq., 147 112-116, (2009). DOI: 10.1016/j.molliq.2008.08.003

 

2008

  1. S. Hayaki, D. Yokogawa, H. Sato,* and S. Sakaki, Solvation effects in oxidative addition reaction of Methyliodide to Pt(II) complex: A theoretical study with RISM-SCF method, Chem. Phys. Lett, 458, 329-332, (2008). DOI: 10.1016/j.cplett.2008.04.11

 

2007

  1. H. Sato,* I. Kawamoto, D. Yokogawa, and S. Sakaki, Electronic structure and solvation structure of [Ru(CN)6]4?/3? in aqueous solution: A RISM-SCF study , J. Mol. Liq., 136, 194-198 (2007). DOI: 10.1016/j.molliq.2007.08.009
  2. H. Sato,* D. Yokogawa, and S. Sakaki, Alternative couplings of solute-solvent interaction in RISM-SCF method, J. Mol. Liq., 136, 190-193 (2007). DOI: 10.1016/j.molliq.2007.08.010
  3. A. Ikeda, D. Yokogawa, H. Sato,* and S. Sakaki, Solvation effect on the interaction between sodium and chloride ions in aqueous solution: An analysis based on the new resonance theory, Int. J. Quantum. Chem., 107, 3132-3136 (2007). DOI: 10.1002/qua.21473
  4. H. Sato,* D. Yokogawa, and S. Sakaki, Polyatomic molecules in condensed phase: bond order index and solvation energy studied by RISM-SCF theory, Condens. Matter Phys., 10, 1-8 (2007).
  5. K. Iida, D. Yokogawa, H. Sato,* and S. Sakaki, The barrier origin on the reaction of CO2 + OH in aqueous solution, Chem. Phys. Lett., 443, 264-268 (2007). DOI: 10.1016/j.cplett.2007.06.086
  6. D. Yokogawa, H. Sato,* and S. Sakaki, New generation of the reference interaction site model self-consistent field method: Introduction of spatial electron density distribution to the solvation theory, J. Chem. Phys., 126 244504 (2007). DOI: 10.1063/1.2742380

This paper was selected in “Virtual Journal of Biological Physics Research 14 (2007).”

  1. D. Yokogawa, H. Sato, Y. Nakao, and S. Sakaki,* Localization or delocalization in the electronic structure of Creutz-Taube-type complexes in aqueous solution, Inorg. Chem., 46, 1966-1974 (2007). DOI: 10.1021/ic060173a

 

2006

  1. D. Yokogawa, H. Sato,* and S. Sakaki, An integral equation theory for 3D solvation structure: A new procedure free from 3D Fourier transform, Chem. Phys. Lett., 432, 595-599 (2006). DOI: 10.1016/j.cplett.2006.10.093
  2. D. Yokogawa, H. Sato,* and S. Sakaki, New evaluation of reconstructed spatial distribution function from radial distribution functions, J. Chem. Phys., 125, 114102 (2006). DOI: 10.1063/1.2345199
  3. A. Ikeda, D. Yokogawa, H. Sato,* and S. Sakaki, Solvation effect on resonance structure: Extracting valence bond-like character from molecular orbitals, Chem. Phys. Lett., 424 449-452 (2006). DOI: 10.1016/j.cplett.2006.04.083

 

2005

  1. D. Yokogawa, H. Sato,* and S. Sakaki, A new method to reconstruct three-dimensional spatial distribution function from radial distribution function in solvation structure, J. Chem. Phys., 123 211102, (2005). DOI: 10.1063/1.2137695

 

2004

  1. S. Nakajima, D. Yokogawa, Y. Nakao, H. Sato, and S. Sakaki,* Bis(μ-sililene)-bridged dinuclear rhodium(0) complex and its palladium(0) and platinum(0) analogues. Theoretical study of their electronic structure, bonding nature, and interconversion between μ-sisilene-bridged form and bis(μ-silylene)-bridges form, Organometalics, 23, 4672-4681 (2004). DOI: 10.1021/om040038a

Comments are closed.